Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Review Help
Analytical solutions for frequency estimators by interpolation of DFT coefficients
Liao J., Lo S.  Signal Processing 100 93-100, 2014. Type: Article
Date Reviewed: Oct 3 2014

Given a sequence of sinusoidal signals s[n] with additive noise in the time domain, a fundamental problem is to estimate its frequency. It has a wide range of applications, such as biomedical signal processing and radar analysis.

The maximum likelihood estimate for the frequency is a reliable and widely used method. It finds a peak (maximum) magnitude in the frequency domain. A standard method consists of two stages: coarse search and fine search. In the coarse search, the discrete Fourier transform (DFT) is first applied to the sequence of signals to obtain another sequence S[k] in the frequency domain. Then an index (integer) kp is determined so that the magnitude of S[kp] reaches the peak among S[k]. This gives a rough estimate, since the sequence is discrete. In the fine search, an adjustment d, between -0.5 and 0.5, to the index kp is found to improve the estimate obtained by the coarse search.

This paper concerns the fine search stage. In the absence of noise, using interpolation, the authors derive a closed formula for the adjusted signal S[kp+d] (the key equation (9) in the paper). Applying the key equation, the authors unify various existing estimators and present closed formulas of the adjustment d for those estimators. The results are very interesting. Theoretically, this paper provides a unified view and better understanding of various existing methods. Practically, the closed formulas can be used to compute the adjustment. It seems that the key equation may be used to develop new methods for finding the adjustment. The authors, however, by applying the key equation, point out that the possibility of new significant estimators is limited due to some constraints.

This paper is very useful for understanding and comparing existing frequency estimators. The limitation of this work is that the key equation assumes the absence of noise. Future work should integrate noise into the analysis.

Reviewer:  Sanzheng Qiao Review #: CR142788 (1501-0075)
Bookmark and Share
  Editor Recommended
Interpolation (G.1.1 )
Would you recommend this review?
Other reviews under "Interpolation": Date
Polynomial functions over finite commutative rings
Bulyovszky B., Horv├íth G.  Theoretical Computer Science 703 76-86, 2017. Type: Article
Jan 22 2018
Convexity and solvability for compactly supported radial basis functions with different shapes
Zhu S., Wathen A.  Journal of Scientific Computing 63(3): 862-884, 2015. Type: Article
Aug 28 2015
Spectrally adapted Mercer kernels for support vector nonuniform interpolation
Figuera C., Barquero-Pérez Ó., Rojo-Álvarez J., Martínez-Ramón M., Guerrero-Curieses A., Caamaño A.  Signal Processing 94421-433, 2014. Type: Article
Dec 9 2014

E-Mail This Printer-Friendly
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright © 2000-2018 ThinkLoud, Inc.
Terms of Use
| Privacy Policy