Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Review Help
Question answering in knowledge bases: a verification assisted model with iterative training
Zhang R., Wang Y., Mao Y., Huai J.  ACM Transactions on Information Systems 37 (4): 1-26, 2019. Type: Article
Date Reviewed: May 10 2022

Zhang et. al., in their paper, present a novel approach to increase the accuracy and efficiency in question-answering systems over a knowledge base. As they explain, “[mapping] a question in a natural language into a fact triple or a collection of fact triples in the KB can be considered a problem of question answering over a KB (QA-KB).” Two approaches exist for tackling the problem. One is based on semantic parsing, which translates natural language questions into a logical structure to query a KB. The other approach exploits neural network models using the APA architecture.

The authors go on to present the three main components of an APA architecture: “an entity alignment component [that] seeks and locates the subject in the question, a path label prediction component [that] uses an exploration or prediction strategy to find the most likely path label, and an object answering component [that] locates the object(s) in the KB.” Of all the components in such a system, predicting the path label in APA is the main challenge.

The authors propose APVA, “a novel modeling framework” that adds a verification mechanism to the APA model to check the correctness of a predicated relation or a path label. They show how the verification mechanism is in some ways a “negative sampling scheme” that “uses the noise examples to better shape the model’s predictive distribution.”

The authors test their APVA model against two large datasets, SimpleQuestions (SQ) and WebQuestions (WQ). SQ contains “108,442 questions written by human annotators ... with ground-truth answers” and WQ consists of “5,810 questions, generated automatically using the Google Suggest [application programming interface, API] and are associated with Freebase facts.” The experimental results show that APVA performs better--in some cases, much better--than a number of other models. This is based on comparison results with nine other models when using WQ and five models when using SQ.

While the questions and answers problem in general is challenging and the existing models do not perform as well as humans, the proposed APVA model does provide a novel mechanism that has the advantage of verifying the truth before propagating the information further. This feedback mechanism improves the performance of such systems.

Reviewer:  Xiannong Meng Review #: CR147437 (2207-0099)
Bookmark and Share
  Featured Reviewer  
General (H.0 )
World Wide Web (WWW) (H.3.4 ... )
General (I.2.0 )
Would you recommend this review?
Other reviews under "General": Date
Next and next new POI recommendation via latent behavior pattern inference
Li X., Han D., He J., Liao L., Wang M.  ACM Transactions on Information Systems 37(4): 1-28, 2019. Type: Article
Jan 25 2022
 Incorporating system-level objectives into recommender systems
Abdollahpouri H.  WWW 2019 (Companion Proceedings of the 2019 World Wide Web Conference, San Francisco, CA,  May 13-17, 2019) 2-6, 2019. Type: Proceedings
Jan 20 2022
Integrating runtime data with development data to monitor external quality: challenges from practice
Aghabayli A., Pfahl D., Martínez-Fernández S., Trendowicz A.  SQUADE 2019 (Proceedings of the 2nd ACM SIGSOFT International Workshop on Software Qualities and Their Dependencies, Tallinn, Estonia,  Aug 26, 2019) 20-26, 2019. Type: Proceedings
Jan 18 2022

E-Mail This Printer-Friendly
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright © 2000-2022 ThinkLoud, Inc.
Terms of Use
| Privacy Policy