Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Browse by topic Browse by titles Authors Reviewers Browse by issue Browse Help
Search
  Browse All Reviews > Computing Methodologies (I) > Artificial Intelligence (I.2) > Natural Language Processing (I.2.7) > Language Models (I.2.7...)  
 
Options:
 
  1-10 of 25 Reviews about "Language Models (I.2.7...)": Date Reviewed
  Hands-on large language models
Alammar J., Grootendorst M., OReilly Media, Inc., Sebastopol, CA, 2024. 428 pp.  Type: Book (9781098150938), Reviews: (3 of 3)

A comprehensive and visually rich guide to the world of large language models (LLMs), this book seeks to provide an accessible introduction to both their conceptual foundations and practical applications....

Apr 23 2025
  Next-generation human-robot interaction with ChatGPT and robot operating system
Koubaa A., Ammar A., Boulila W. Software--Practice & Experience 55(2): 355-382, 2025.  Type: Article

To quote the 1931 film Frankenstein [1]:...

Apr 21 2025
   Large language models: a deep dive: bridging theory and practice
Kamath U., Keenan K., Somers G., Sorenson S., Springer International Publishing, Cham, Switzerland, 2024. 495 pp.  Type: Book (9783031656460)

Large language models (LLMs) represent a groundbreaking advancement in natural language processing (NLP), enabling unprecedented capabilities in text generation, understanding, and context comprehension. Their potential extends across various doma...

Mar 18 2025
  Knowledge editing for large language models: a survey
Wang S., Zhu Y., Liu H., Zheng Z., Chen C., Li J. ACM Computing Surveys 57(3): 1-37, 2025.  Type: Article

Wang et al. provide a comprehensive survey on knowledge-based model editing (KME) techniques, focusing on methods to efficiently and precisely update large language models (LLMs) without negatively impacting unrelated knowledge. The paper categori...

Feb 18 2025
  Hands-on large language models
Alammar J., Grootendorst M., OReilly Media, Inc., Sebastopol, CA, 2024. 428 pp.  Type: Book (9781098150938), Reviews: (2 of 3)

This book combines theory and practice about large language models (LLMs). It includes three parts....

Feb 14 2025
  Hands-on large language models
Alammar J., Grootendorst M., OReilly Media, Inc., Sebastopol, CA, 2024. 428 pp.  Type: Book (9781098150938), Reviews: (1 of 3)

Hands-on large language models, by Jay Alammar and Maarten Grootendorst, is a beginner-friendly guide to understanding and using large language models (LLMs). Designed for readers with some basic knowledge of Python and machine learning, th...

Dec 24 2024
  More than a chatbot: language models demystified
Kurpicz-Briki M., Springer International Publishing, cham, Switzerland, 2023. 128 pp.  Type: Book (9783031376894)

More than a chatbot provides an insightful exploration of the world of artificial intelligence (AI)-driven conversational agents and their broader societal implications. The book takes readers on a journey from the early days of chatbots, i...

Jul 12 2024
  Quick start guide to large language models: strategies and best practices for using ChatGPT and other LLMs
Ozdemir S., Pearson, Hoboken, NJ, 2023. 288 pp.  Type: Book (0138199191)

This book is devoted to the hot topics of large language models (LLMs) and generative artificial intelligence (AI). It can be considered as a guidebook that introduces readers to the realm of natural language processing (NLP) by exploiting open-so...

Jan 26 2024
  The grammar of mammalian brain capacity
Rodriguez A., Granger R. Theoretical Computer Science 633(C): 100-111, 2016.  Type: Article

Which aspects of the language faculty are uniquely human, and which are shared with other mammals? In this paper, Rodriguez and Granger try to address this fundamental question from an innovative neuro-computational perspective. They c...

Sep 15 2016
   Semantic similarity from natural language and ontology analysis
Harispe S., Ranwez S., Janaqi S., Montmain J., Morgan & Claypool Publishers, San Rafael, CA, 2015. 254 pp.  Type: Book (978-1-627054-46-1)

Harispe et al. offer a coherent and most-welcome unified view of the vast literature on semantic similarity, covering both corpus-based and ontological methods. It fills a gap in the current literature and is rich with references and i...

Apr 25 2016
 
 
 
Display per page
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright 1999-2025 ThinkLoud®
Terms of Use
| Privacy Policy