Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Review Help
A logic for category theory
Gilmore P., Tsiknis G. Theoretical Computer Science111 (1-2):211-252,1993.Type:Article
Date Reviewed: Sep 1 1994

An excellent proposal for a natural-deduction-based set-theoretic semantics for category theory is presented. In the natural deduction logic NaDSet, only joint denial (neither nor) operators and universal quantifiers are used as the primitive constructs. A set of logical rules for the sequent calculus are defined. The existential quantifier and other logical connectives , , and can then be defined, and the corresponding deduction rules can be derived. The logic and its corresponding set theory are natural extensions of Tarski semantics, and they are used as the basis for constructing the notions of categories and functors. The approach avoids the paradoxes in conventional set theory. On the other hand, it has no constraints against self-membership or self-reference. For example, it can be derived that the category of categories and the category of functors are themselves members of the set of categories. There is no need to distinguish between small and large categories. No additional existence assumption is required. Other useful constructs such as opposites, product categories, comma categories, universals, limits, and adjoints can also be defined.

The authors present a promising picture of this remarkable approach. Readers can be excused for being cautious, however. Why can the constraints on conventional set theory be relaxed and the paradoxes solved without newly imposed conditions? Is any tradeoff necessary, and does this otherwise outstanding approach have any limitations?

Reviewer:  T.H. Tse Review #: CR117786
Bookmark and Share
Computational Logic (F.4.1 ... )
Algebraic Approaches To Semantics (F.3.2 ... )
Would you recommend this review?
Other reviews under "Computational Logic": Date
Extended Horn sets in propositional logic
Chandru V., Hooker J. Journal of the ACM 38(1): 205-221, 1991. Type: Article
Nov 1 1991
Preservation of expressive completeness in temporal models
Amir A., Gabbay D. (ed)   (,1991. Type: Proceedings
Oct 1 1987
Monotone versus positive
Ajtai M., Gurevich Y. (ed) Journal of the ACM 34(4): 1004-1015, 1987. Type: Article
Jul 1 1988

E-Mail This Printer-Friendly
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright 1999-2023 ThinkLoud®
Terms of Use
| Privacy Policy