Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Review Help
Search
Lane compression: a lightweight lossless compression method for machine learning on embedded systems
Ko Y., Chadwick A., Bates D., Mullins R. ACM Transactions on Embedded Computing Systems20 (2):1-26,2021.Type:Article
Date Reviewed: May 17 2023

Yonsun Ko’s paper presents an innovative approach to compressing machine learning models for use on embedded systems. The paper proposes lane compression, a new compression method that is specifically designed to be lightweight and lossless, making it ideal for use on embedded systems with limited resources.

The suggested method profiles machine learning data that has been collected in advance of runtime, and divides values bitwise into various lanes that have more pronounced statistical properties. Then, from a limited number of affordable compression strategies, the best compression strategy is selected for each lane. Despite having extremely low compute and memory needs, lane compression achieves a compression rate that is on par with (or higher than) Huffman coding. For both inference and retraining, lane compression is tested and analyzed on a variety of machine learning networks.

The paper provides a thorough analysis of the proposed compression method and its performance compared to other compression methods. The authors demonstrate that lane compression can achieve comparable compression rates to other state-of-the-art compression methods, while requiring significantly less computational resources. This makes it a promising method for compressing machine learning models on embedded systems, where resource constraints are a significant concern.

The paper also includes a detailed evaluation of the proposed compression method on a variety of machine learning models and datasets. The results show that lane compression can achieve significant compression rates while maintaining high accuracy levels, making it a viable option for compressing machine learning models for use on embedded systems.

In summary, this well-written and well-researched paper presents an innovative approach to compressing machine learning models for use on embedded systems. The proposed method shows promising results and has the potential to significantly improve the efficiency of machine learning on embedded systems with limited resources.

Reviewer:  Mihailescu Marius Iulian Review #: CR147591 (2307-0092)
Bookmark and Share
  Editor Recommended
Featured Reviewer
 
 
Real-Time Systems And Embedded Systems (D.4.7 ... )
 
 
Learning (I.2.6 )
 
Would you recommend this review?
yes
no
Other reviews under "Real-Time Systems And Embedded Systems": Date
Real-time software techniques
Heath W., Van Nostrand Reinhold Co., New York, NY, 1991. Type: Book (9780442003050)
Aug 1 1991
Developing safety systems
Pyle I., Prentice-Hall, Inc., Upper Saddle River, NJ, 1991. Type: Book (9780132042987)
Jul 1 1992
Real-time systems with transputers
Zedan H.  Real-time systems with transputers,York, UK,Sep 18-20, 1990,1990. Type: Whole Proceedings
Apr 1 1992
more...

E-Mail This Printer-Friendly
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright 1999-2024 ThinkLoud®
Terms of Use
| Privacy Policy