Computing Reviews
Today's Issue Hot Topics Search Browse Recommended My Account Log In
Review Help
Search
Introduction to the mathematics of subdivision surfaces
Andersson L., Stewart N., Society for Industrial and Applied Mathematics, Philadelphia, PA, 2010. 380 pp.  Type: Book (978-0-898716-97-9)
Date Reviewed: Mar 28 2011

For students in computer science and applied math who deal with computer graphics, solid modeling, and computer-aided design, this book is a must-read. It provides a well-written and comprehensive introduction to the field, explaining the underlying mathematics in a clear and simple manner. The book establishes a hierarchy of subdivision methods, and provides detailed discussions of various methods without being restricted to questions of regularity.

Because parts of the book were used previously as a reference in computer science graduate courses, each chapter ends with some well-crafted exercises. One might expect chapter 1 to be introductory and to provide basic information on topics discussed in subsequent chapters; it does that and much more. The mathematical level of chapter 1 is a bit lower than that of the other chapters. Chapter 1 also contains previews of the topics of later chapters. This unusual approach gives the reader a chance to evaluate his or her own knowledge on the subject, and possibly look for extra information before starting into the book’s detailed, more advanced discussion of methods. I found this approach quite reasonable because many of the topics in the book, such as B-splines, Fourier methods, splitting schema, and subdivision matrices, may not be discussed in other computer science courses; readers have a chance to fill the necessary gaps before reading.

Chapter 2 provides a comprehensive introduction to the central topic of B-spline surfaces, but in terms of subdivision surface methods. As such, the reader should not expect to see classical topics such as nonuniform rational B-splines (NURBS) or the knot insertion algorithm. The book presents B-splines in a slightly unorthodox fashion, since it is based on centered basis functions and the corresponding centered versions of subdivision polynomials introduced in chapter 1.

Chapters 3 and 4 deal with box splines and generalized spline surfaces. Chapter 4 generalizes topics such as the subdivision equation, the nodal-function computation principle, and the polynomial coefficient principle, discussed in previous chapters.

Chapter 5 is one of the most interesting parts of the book. It deals with convergence and smoothness, and discusses the results of convergence for general subdivision polynomial schemes. Chapters 6 and 7 complete the coverage of subdivision surfaces by discussing topics related to the evaluation and estimation of surfaces and shape control.

The notes and appendix at the end of the book are likely to be of great help to the reader. Overall, this is one of the most pleasant, well-organized, and informative books on the subject. Graduate students in computer science will find it useful for their studies, and researchers in fields such as solid modeling and computer graphics will benefit from it, too.

Reviewer:  Alexander Tzanov Review #: CR138933 (1109-0900)
Bookmark and Share
  Reviewer Selected
Editor Recommended
Featured Reviewer
 
 
Approximation Of Surfaces And Contours (G.1.2 ... )
 
 
Mathematics And Statistics (J.2 ... )
 
 
Numerical Algorithms And Problems (F.2.1 )
 
Would you recommend this review?
yes
no
Other reviews under "Approximation Of Surfaces And Contours": Date
 Curve and surface reconstruction: algorithms with mathematical analysis (Cambridge Monographs on Applied and Computational Mathematics)
Dey T.,  Cambridge University Press, New York, NY, 2006. 228 pp. Type: Book (9780521863704)
Sep 14 2007
Handbook of computational methods for integration
Kythe P., Schaferkotter M.,  Chapman & Hall/CRC, Boca Raton, FL, 2004. 624 pp. Type: Book (9781584884286)
Dec 19 2005
Variational normal meshes
Friedel I., Schröder P., Khodakovsky A.  ACM Transactions on Graphics 23(4): 1061-1073, 2004. Type: Article
Feb 11 2005

E-Mail This Printer-Friendly
Send Your Comments
Contact Us
Reproduction in whole or in part without permission is prohibited.   Copyright © 2000-2014 ThinkLoud, Inc.
Terms of Use
| Privacy Policy